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When a drop moves in a uniform vertical temperature gradient under the combined
action of gravity and thermocapillarity at small values of the thermal Péclet number,
it is shown that inclusion of inertia is crucial in the development of an asymptotic
solution for the temperature field. If inertia is completely ignored, use of the method
of matched asymptotic expansions, employing the Péclet number (known as the
Marangoni number) as the small parameter, leads to singular behaviour of the outer
temperature field. The origin of this behaviour can be traced to the interaction of the
slowly decaying Stokeslet, arising from the gravitational contribution to the motion
of the drop, with the temperature gradient field far from the drop. When inertia is
included, and the method of matched asymptotic expansions is used, employing the
Reynolds number as a small parameter, the singular behaviour of the temperature
field is eliminated. A result is obtained for the migration velocity of the drop that is
correct to O(Re2 logRe).

1. Introduction
In the formation of alloys, it is possible for drops rich in one component to

precipitate out of a liquid mixture of two components as the liquid is cooled. An
example is the system Al–Si–Bi on which experiments were performed by Prinz &
Romero (1993). The drops, rich in bismuth, are subjected to the simultaneous action
of gravity and a vertical temperature gradient field in a strip-casting process. Prinz
& Romero showed that it is possible to use the temperature gradient to reduce the
gravitational settling velocity so that a more homogeneous suspension of bismuth-rich
drops in an aluminium-rich matrix could be achieved in the central regions of the cast
material. This is because of the action of thermocapillarity, which causes the motion
of drops in the direction of the temperature gradient when the interfacial tension
decreases with increasing temperature. The authors go on to suggest that alloys such
as Al–Si–Bi and Al–Si–Pb with a homogeneous distribution of the droplets can serve
as improved bearing materials in the future. Although the practical system involves a
collection of droplets of different sizes, it is instructive to examine the behaviour of an
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isolated drop under idealized conditions as a prelude to considering more complicated
interaction problems.

For the motion of an isolated drop subjected simultaneously to the action of gravity
and a vertical temperature gradient, Young, Goldstein & Block (1959) obtained results
for the field variables and the quasi-steady velocity of the drop when convective
transport of both momentum and energy are neglected. Several investigators have
analysed this problem including convective transport effects, but only when motion is
driven purely by thermocapillarity in the absence of a body force, with one exception
that will be identified shortly. In these analyses, an isolated drop is assumed to move at
a steady velocity in an unbounded continuous phase fluid with which it is immiscible,
and in which a uniform temperature gradient is imposed in the undisturbed state.
Bratukhin (1975) included convective transport of both momentum and energy, and
presented an asymptotic analysis of the problem for small values of the Reynolds
number for fixed Prandtl number, using a regular perturbation expansion. He obtained
the corrections for the velocity and temperature fields at O(Re), and calculated the
resulting small inertial deformation of the shape of the drop. He found the correction
to the migration velocity to be zero at O(Re). Thompson, DeWitt & Labus (1980)
extended Bratukhin’s analysis to the next higher order.

Subramanian (1981) pointed out that the solution obtained by regular perturbation
fails to meet the boundary condition at infinity because convective transport effects
are not uniformly small everywhere; far from the drop, convection and conduction
play equally important roles. He used the method of matched asymptotic expansions
to analyse the thermocapillary motion of a bubble when inertial effects are completely
negligible, but small amounts of convective transport of energy are included. In this
case, the solutions for the fields and the migration velocity of the bubble are expanded
in asymptotic series in the thermal Péclet number, termed the Marangoni number,
Ma. Subramanian found that the first non-zero correction to the steady migration
velocity of the bubble occurs at O(Ma2). Subsequently, Subramanian (1983) extended
the analysis to the case of a drop, calculating the fields both within and outside the
drop, and obtained the first non-zero correction to the migration velocity, again at
O(Ma2). Crespo, Migoya & Manuel (1998) performed a similar analysis using the
velocity profile corresponding to Re→∞.

Crespo & Manuel (1983) found that the Stokes solution for the velocity field in
the continuous phase for the steady thermocapillary motion of a bubble satisfies
the full Navier–Stokes equation and therefore is an exact solution at all values
of the Reynolds number, so long as the temperature field satisfies the Laplace
equation. Balasubramaniam & Chai (1987) independently discovered that this result
holds for the solutions both within and outside a drop, and used that solution to
calculate small inertial deformations of a drop from the spherical shape. Haj-Hariri,
Nadim & Borhan (1990) independently discovered the same solution, and went on
to calculate the correction to the migration velocity of the drop and the correction
to the temperature field due to small inertial deformations of the shape using the
Lorentz reciprocal theorem.

Asymptotic analyses have been performed in the thermocapillary migration problem
for the case when the Marangoni number is large by Crespo & Jimenez-Fernandez
(1992a, b), and by Balasubramaniam & Subramanian (1996, 2000). These authors
have considered both the limiting cases of Re→ 0 and Re→∞. In the only available
asymptotic analysis that includes a body force, Balasubramaniam (1998) has examined
the motion of a gas bubble in a vertical temperature gradient in the limiting case
Re → ∞ and Ma → ∞, including the buoyant contribution to the motion as well as
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the influence of temperature on viscosity. Balasubramaniam used the potential flow
velocity profile for the motion of a bubble in the limit Re → ∞. This profile applies
at leading order whether the motion is driven by gravity or by thermocapillarity.
Therefore, the gravitational force only enters the problem via an additional term in
the expression for the viscous dissipation that is used to determine the velocity of
the bubble. The result given by Balasubramaniam (1998) for the steady migration
velocity of the bubble at leading order is a linear combination of the result for purely
thermocapillary motion obtained by Balasubramaniam & Subramanian (1996) and
the purely gravitational rise velocity of a bubble at large Reynolds number. Inclusion
of a body force in the present analysis, which applies in the limit Re→ 0, also leads
to a simple superposition of results at leading order because of the linearity of the
problem at that order, but introduces significant complications at higher orders. A
more detailed discussion of the literature, including contributions in which a numerical
technique was used to obtain the solution, can be found in a recent monograph by
Subramanian & Balasubramaniam (2001).

The purpose of the present article is to highlight a curious feature that emerges
in an asymptotic analysis of the motion of a drop under the combined influence of
gravity and thermocapillarity when convective transport effects are included. When
inertial effects are small, it is customary to neglect them altogether and assume Stokes
flow. Because the Prandtl number in many liquids is larger than unity, and can vary
over a few orders of magnitude, one might consider analysing the problem for small
values of the thermal Péclet number using a suitable asymptotic expansion. As noted
above, convective transport effects are not uniformly small over the domain, however.
Convection and conduction play equally important roles far from the drop, and the
method of matched asymptotic expansions must be used to solve the problem. Such
a procedure works well for the problem of heat transfer between a rigid sphere
maintained at a constant temperature and a continuous phase that is at a different
but uniform temperature in the undisturbed state, as shown by Acrivos & Taylor
(1962). It also continues to work when the analysis is extended to the analogous
problem for a fluid drop (Brunn 1982), or to the motion of a drop purely due to
thermocapillarity in a continuous phase in which a uniform temperature gradient
is imposed in the undisturbed state (Subramanian, 1981, 1983). But, when a similar
analysis is attempted while accommodating a body force, we demonstrate that it leads
to a singular solution. This is a consequence of the interaction of the slowly decaying
Stokeslet flow far from the drop with the temperature gradient field. The remedy
is to use the proper velocity distribution obtained by including a slight amount of
inertia. The resulting Oseen flow decays correctly far from the drop, and avoids the
appearance of the singularity in the heat transfer problem.

2. Analysis
Consider an isolated drop placed in a continuous-phase fluid of unbounded extent

in which a vertical temperature gradient ∇T∞ = |∇T∞| iz is imposed, where iz is a unit
vector in the z∗-direction. The acceleration due to gravity points in the direction of
the vector − iz . Figure 1 depicts the system and the spherical polar coordinates used
in the analysis, which is performed in a reference frame attached to the moving drop.
The density d, dynamic viscosity µ, and the thermal diffusivity κ, of the continuous
phase are assumed constant; ν = µ/d is used to designate the constant kinematic
viscosity of the continuous phase. Similar properties in the drop phase, identified by
a caret, are assumed constant as well. Also σT , which stands for the rate of change of
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Figure 1. Schematic of the system, with a uniform stream −U∗ iz approaching the drop in a
reference frame attached to the drop.

the interfacial tension between the drop and the continuous phase with temperature,
is assumed to be a negative constant. For definiteness we assume the drop to move
upward at a velocity U∗ iz . Note that downward motion is possible only when the
drop is more dense than the continuous phase.

Scaled variables are used in the analysis. The radial coordinate is scaled using
the radius R of the drop, and velocity is scaled using a thermocapillary reference
velocity v0 = −(σT |∇T∞|R)/µ. Pressure and viscous stresses are scaled using µv0/R =
−σT |∇T∞|. The temperature is scaled by subtracting the value in the undisturbed
continuous phase in the horizontal plane that passes through the instantaneous
location of the centre of mass of the drop, and dividing by |∇T∞|R. The symbols v, p
and T are used to designate the scaled velocity, pressure, and temperature fields, and
similar symbols with a caret are used for referring to variables within the drop.

In the laboratory reference frame, the temperature field in the undisturbed contin-
uous phase fluid is steady, but spatially non-uniform. In a reference frame moving
with the drop, which we use in the analysis, the temperature in the undisturbed
continuous-phase fluid will change with time and position. But the corresponding
scaled temperature, as defined above, will be independent of time. This permits a
steady problem to be posed for the scaled temperature and velocity fields. The fields
satisfy the following continuity, Navier–Stokes, and energy equations (Subramanian
& Balasubramaniam 2001):

∇ · v = 0, (1)

Re[( v · ∇) v] = −∇p+ ∇2 v, (2)

Ma[U + v · ∇T ] = ∇2T , (3)

∇ · v̂ = 0, (4)

γRe[( v̂ · ∇) v̂] = −∇p̂+ α∇2 v̂, (5)

Ma[U + v̂ · ∇T̂ ] = λ∇2T̂ . (6)

In the above equations, Re = (Rv0)/ν is the Reynolds number, and Ma = (Rv0)/κ
is a Péclet number, termed the Marangoni number. The scaled velocity of the drop is

U = U iz; and γ = d̂/d, α = µ̂/µ, and λ = κ̂/κ, are the ratios of the density, dynamic
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viscosity, and the thermal diffusivity of the drop phase to the corresponding properties
of the continuous phase, respectively. We assume the capillary number Ca = µv0/σ,
where σ is a characteristic value of the interfacial tension, to be negligibly small,
and therefore neglect deformation from the spherical shape. The boundary conditions
satisfied by the velocity field are as follows.

The velocity approaches a uniform stream far from the drop:

v → −U iz as r →∞. (7)

At the drop surface, the velocity must be continuous, the normal component of the
velocity must be zero, and the discontinuity in the tangential stress is balanced by the
surface gradient of the interfacial tension:

vθ(1, s) = v̂θ(1, s), (8)

vr(1, s) = v̂r(1, s) = 0, (9)

τrθ(1, s)− τ̂rθ(1, s) = −√1− s2 ∂T
∂s

(1, s). (10)

In (8)–(10), the subscripts r and θ represent the corresponding spherical polar compo-
nents, τrθ and τ̂rθ are the scaled tangential stress components in the continuous phase
and the drop phase, respectively, and s = cos θ. In addition to these boundary con-
ditions, we require that the velocity be bounded everywhere within the drop. Because
the shape has been assumed to be a sphere, we do not attempt to satisfy the normal
stress balance. An expansion for small capillary number can be used in conjunction
with that balance to infer the nature of slight deformations from the spherical shape,
if desired.

In a like manner, we require that the temperature approach the undisturbed field
far from the drop:

T → rs as r →∞. (11)

At the surface of the drop, the temperature and the heat flux must be continuous. In
writing the latter condition, we neglect the relatively small discontinuity arising from
the creation and destruction of the interface:

T (1, s) = T̂ (1, s), (12)

∂T (1, s)

∂r
= β

∂T̂ (1, s)

∂r
. (13)

Here, β = k̂/k is a thermal conductivity ratio. We must also require the temperature
field to be bounded everywhere within the drop. Setting the net force on the drop to
zero completes the set of conditions:∫ 1

−1

[
sp− 2s

r

∂

∂s
(
√

1− s2vθ) + r
√

1− s2 ∂
∂r

(vθ
r

)]
r=1

ds+ 2G = 0. (14)

Here G = gR(d̂− d)/(3σT |∇T∞|) is a dimensionless group that represents the relative
importance of the effect of gravity to that of thermocapillarity. When the drop is
more dense than the continuous phase, G assumes negative values because σT is a
negative constant.

For convenience in the subsequent analysis, we define a Stokes streamfunction ψ
via v = ∇φ×∇ψ where φ is the azimuthal angular coordinate. A similar definition for
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ψ̂ applies in the drop phase. The streamfunction fields satisfy the following equations:

Re

[
1

r2

∂(ψ,E2
rψ)

∂(r, s)
+

2

r2
E2
rψLrψ

]
= −E4

rψ, (15)

Re

[
1

r2

∂(ψ̂,E2
r ψ̂)

∂(r, s)
+

2

r2
E2
r ψ̂Lrψ̂

]
= −α

γ
E4
r ψ̂, (16)

where

E2
r =

∂2

∂r2
+

1− s2
r2

∂2

∂s2
(17)

and

Lr =
s

1− s2
∂

∂r
+

1

r

∂

∂s
. (18)

2.1. Solution when the Reynolds number is set equal to zero

We first proceed to solve for the field variables and the migration velocity for small
values of Ma by completely neglecting inertia, setting Re = 0. Asymptotic expansions
for the fields and the migration velocity with Ma as the perturbation parameter are

ψ̂ = ψ̂0(r, s) + o(1), (19)

ψ = ψ0(r, s) + o(1), (20)

t̂ = t̂0(r, s) + o(1), (21)

t = t0(r, s) + o(1), (22)

U = U0 + o(1). (23)

We have used lower-case symbols (t̂, t) to designate the temperature fields in (21) and
(22). The order of the coefficient of t0 should be established by matching, but we
have anticipated the result of that process and selected it as unity. As noted earlier,
the convective transport terms become comparable to conduction far from the drop
(when r ∼ O

(
1/Ma

)
), so that it is necessary to define an outer radial coordinate

ρ∗ = Mar, and rewrite the energy equation in the continuous phase in the outer
variables. The outer temperature field in the continuous phase T (ρ∗, s) satisfies

V · ∇ρ∗T = ∇2
ρ∗T − 1

Ma
U (24)

where V is the velocity field written as a function of (ρ∗, s), and the subscript ρ∗
in the operator ∇ρ∗ signifies the use of outer variables along with the condition that
T → (ρ∗s)/Ma as ρ∗ → ∞ and suitable matching conditions as ρ∗ → 0. The field
T (ρ∗, s) can be expanded as

T =
ρ∗s
Ma

+ T0(ρ
∗, s) + o(1). (25)

The coefficient of T0 should be permitted to depend upon Ma, but it will be evident
from the governing equation for T0 that it has to be O(1), and we have anticipated this
in writing (25). Because the small parameter Ma enters the fluid-mechanical problem
only through the tangential stress balance, solutions of the Stokes equation for the
complete streamfunction fields within and outside the drop can be written immediately
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and specialized to the boundary conditions of this problem. These solutions are

ψ̂ =
1

2(1 + α)
(r2 − r4)[I2 −U]C2(s) +

1

4(1 + α)

∞∑
n=3

n(n− 1)In(r
n − rn+2)Cn(s), (26)

ψ =
I2

2(1 + α)

(
1

r
− r
)
C2(s) +

U

2

[
2r2 +

α

1 + α

1

r
− 2 + 3α

1 + α
r

]
C2(s)

+
1

4(1 + α)

∞∑
n=3

n(n− 1)In

(
1

rn−1
− 1

rn−3

)
Cn(s). (27)

Here, Cn(s) is the Gegenbauer polynomial of order n and degree − 1
2
, and we have

omitted the degree designation to avoid clutter. The constants In are defined as

In = −
∫ 1

−1

∂t

∂s
(1, s)Cn(s)ds = −

∫ 1

−1

t(1, s)Pn−1(s)ds (n > 2). (28)

The symbol Pn(s) stands for the Legendre polynomial. Because the temperature field
is expanded in an asymptotic series in (22), a similar expansion is obtained for In:

In = In0 + o(1). (29)

The force balance on the drop yields

U = − I2

2 + 3α
+

2(1 + α)

2 + 3α
G. (30)

It is evident that the streamfunction fields and the migration velocity to any order
can be written once the temperature fields are known to that order. Substitution of
the expansions for the temperature fields into the governing equations and boundary
conditions, followed by taking the limit as Ma→ 0, leads to the governing equations
and boundary conditions for the leading-order fields:

∇2t̂0 = 0, (31)

∇2t0 = 0, (32)

∇2
ρ∗T0 −

(
I20

2 + 3α
− 2(1 + α)

2 + 3α
G

)(
s
∂T0

∂ρ∗
+

1− s2
ρ∗

∂T0

∂s

)
= − lim

Ma→0

[
1

Ma
(U + V · ∇ρ∗(ρ∗s))

]
= G

2 + P2(s)

3ρ∗
. (33)

We note that the inhomogeneity appearing in (33) for the outer temperature field T0

arises from the Stokeslet term in the velocity field (proportional to 1/ρ∗) interacting
with the applied temperature gradient field far from the drop. The boundary condi-
tions on the leading-order temperature field within the drop t̂0 and the corresponding
leading-order inner field in the continuous phase t0 are the same as those given in (12)
and (13), along with a boundedness condition on t̂0(0, s) and a matching requirement
on the field t0 as r → ∞. The outer field T0 must vanish as ρ∗ → ∞ and match the
inner field as ρ∗ → 0. The procedure for obtaining the solution is straightforward,
and is well-described by Proudman & Pearson (1957) and Acrivos & Taylor (1962)
in analogous fluid mechanical and heat transport problems. For matching, we use the
asymptotic matching principle given by Van Dyke (1975). The details of the analysis
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can be found in the doctoral thesis of Zhang (2000). The leading-order streamfunction
fields are the same as those obtained from Young et al. (1959):

ψ̂0 = Â(r2 − r4)(1− s2), (34)

ψ0 =

(
U0r

2 +
B

r
− Gr

)
1− s2

2
. (35)

The constants Â and B can be written as

Â = − G(2 + β) + 3

2(2 + 3α)(2 + β)
, (36)

B =
Gα(2 + β)− 2

(2 + 3α)(2 + β)
. (37)

The leading-order temperature field within the drop is given by

t̂0(r, s) =
G

2U0

− G

U0

[
γE + log

(
U0

2

)]
+

3

2 + β
rP1(s) (38)

and the leading-order inner temperature field in the continuous phase and the con-
tribution to the outer field at O(1) are written as

t0(r, s) =
G

2U0

− G

U0

[
γE + log

(
U0

2

)]
+

(
r +

1− β
2 + β

1

r2

)
P1(s), (39)

T0(ρ
∗, s) =

G

U0

[
E1

(
U0

2
ρ∗{1 + s}

)
− 1

2
P1(s) + log(ρ∗{1 + s})

]
+

G

ρ∗U2
0

[
1− exp

{
−U0ρ

∗

2
(1 + s)

}]
. (40)

Here, E1(η) =
∫ ∞
η

(e−x/x)dx is the exponential integral, and γE = 0.577215 . . . is Euler’s

constant. The term involving the exponential integral in (40) is a homogeneous
solution of (33). It is important to write the homogeneous solution in this form to
match correctly with the inner field. Merritt (1988), who first analysed the present
problem for a gas bubble, was unable to match the inner and outer solutions at
leading order because the homogeneous solution was written as an infinite series in
the usual specialized form given in Acrivos & Taylor (1962).

It is possible now to obtain the leading-order migration velocity U0 as

U0 =
2

(2 + 3α)(2 + β)
+

2(1 + α)

2 + 3α
G. (41)

This is a well-known result first obtained by Young et al. (1959). Also, one can
proceed to obtain a first-order correction to it as shown by Zhang (2000), because
the inner fields at the next order can be obtained by solving the governing equations
and applying the boundary conditions, followed by matching with the leading-order
outer field. Note, however, that the outer field does not satisfy the boundary con-
dition imposed on it as ρ∗ → ∞. Instead T → ρ∗s/Ma + (G/U0) log ρ∗. While the
logarithmic growth term is overshadowed by the linear growth term as ρ∗ → ∞, its
appearance is nevertheless troublesome, and physically unacceptable. It arises due to
the inhomogeneity in the Oseen equation for the outer temperature field that occurs
due to the presence of the slowly decaying Stokeslet in the velocity field.



Motion of a drop in a vertical temperature gradient 205

This singular behaviour in the outer solution needs to be relieved by correcting the
Stokes flow solution for inertial effects. When inertia is included, the velocity field far
from the drop decays more rapidly than the Stokeslet, and we find that there is no
singularity in the outer solution. We now proceed to provide results from the analysis
including small amounts of inertia.

2.2. Solution including small inertial effects

When the Reynolds number is not set equal to zero, it can serve as a logical
perturbation parameter. All the field variables and the migration velocity are expanded
in asymptotic series in the limit Re→ 0. The Marangoni number Ma = RePr, where
Pr = ν/κ is the Prandtl number. The Prandtl number is treated as an O(1) constant.
The outer variable is defined as ρ = Re r. The analysis of the fluid-mechanical
problem follows the lines established by Proudman & Pearson (1957), and that of
the energy equation is similar to that performed by Gupalo & Ryazantsev (1972)
who considered heat or mass transfer from a moving rigid sphere to a fluid, and
accounted for small amounts of inertia in their analysis. One difference from these
problems is that the uniform stream itself is expanded in an asymptotic series as
U = U0 + ReU1 + o(Re). Therefore, while higher-order contributions to the outer
streamfunction in the analysis of Proudman & Pearson approach zero as ρ→∞, here
we encounter non-zero uniform stream contributions at every order, each involving an
unknown correction to the scaled velocity. On the other hand, in the present problem,
the hydrodynamic force is a specified quantity, being balanced by the hydrostatic
force on the drop. The latter is a constant independent of the Reynolds number, so
that there are no contributions to the hydrodynamic force on the drop beyond leading
order. The details of the analysis are lengthy, and can be found in Zhang (2000).
Here, we only provide the principal results. In the following governing equations,
Φ(ρ, s) = Re2ψ(r, s) represents the outer streamfunction in the continuous phase, and
T (ρ, s) stands for the outer temperature field:

1

ρ2

∂(Φ,E2
ρΦ)

∂(ρ, s)
+

2

ρ2
E2
ρΦLρΦ = −E4

ρΦ, (42)

V · ∇ρT = ∇2
ρT − 1

Re
U. (43)

V represents the velocity field expressed in the outer variables (ρ, s) and the subscript
ρ in the operators E2,E4,L, and ∇ signifies the use of outer variables. The field Φ
must satisfy the boundary condition

Φ→ 1
2
Uρ2(1− s2) as ρ→∞ (44)

and matching requirements as ρ→ 0. The field T must satisfy the boundary condition
T → (ρs)/Re as ρ→∞ and matching conditions with the inner field t as ρ→ 0.

The inner velocity field in the continuous phase v and the velocity field within the
drop v̂ will satisfy the boundary conditions stated in (8) to (10) and the requirement
that the velocity within the drop remain bounded. In addition, the inner velocity field
must satisfy matching requirements with the outer velocity field as r →∞. We can use
the formal expansions in (19) to (23) with the understanding that the small parameter
now is Re. The expansion for the outer temperature field T (ρ, s) is slightly modified:

T =
ρs

Re
+ T0(ρ, s) + o(1). (45)

It can be seen that the leading-order inner streamfunction in the continuous phase
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ψ0 as well as the leading-order streamfunction within the drop ψ̂0 satisfy Stokes’s
equation. General solutions for these fields can be written, but the arbitrary constants
appearing in them cannot be evaluated without knowledge of the solution for the
temperature fields at leading order. Upon writing Φ = Φ0 + G1(Re)Φ1 + o(G1(Re))
where Φ0 = (U0/2)ρ2(1 − s2), examination of the coupled problem reveals that we
need to obtain Φ1 to determine the values of all the constants in the leading-order
solutions, and to calculate the first corrections in the inner streamfunction fields. The
following governing equation can be written for Φ1(ρ, s):

−E4
ρΦ1 = U0

[
1− s2
ρ

∂

∂s
+ s

∂

∂ρ

]
(E2

ρΦ1). (46)

Upon matching the outer solution Φ0 +G1(Re)Φ1 at the level of second derivatives in
ρ with the inner solution ψ0, some of the arbitrary constants in the solutions as well
as the dependence of G1 on Re can be established. We find that G1 = Re.

The leading-order temperature fields satisfy the following governing equations:

∇2t̂0 = 0, (47)

∇2t0 = 0, (48)

∇2
ρT0 = Pr

[
Vr0

∂T0

∂ρ
+
Vθ0

ρ
(1− s2)1/2 ∂T0

∂s

]
+ Pr[U1 + sVr1 + (1− s2)1/2Vθ1]. (49)

The boundary conditions on t̂0 and t0 are the coupling conditions given in (12)
and (13) and the requirements that t̂0 remain bounded within the drop and t0 be
matched to the outer solution. The field T0 must vanish as ρ→∞ and satisfy suitable
matching conditions with the inner field. We report the solutions next. The details
can be found in Zhang (2000).

The streamfunction fields ψ0 and ψ̂0 are given by the results in (34) and (35) that
were obtained in the analysis neglecting inertia. The outer field Φ1 is

Φ1 = − G

U0

(1− s)
[
1− exp

{
−U0ρ

2
(1 + s)

}]
+U1ρ

2 1− s2
2

. (50)

The leading-order temperature field within the drop, the leading-order inner temper-
ature field in the continuous phase, and the correction to the outer temperature field
at O(1) are

t̂0 = − Pr

Pr − 1

G

U0

logPr +
3

2 + β
rP1(s), (51)

t0 = − Pr

Pr − 1

G

U0

logPr +

[
r +

1− β
2 + β

1

r2

]
P1(s), (52)

T0 = − G

U2
0ρ

[
1 +

1

Pr − 1

{
exp

(
−PrU0

2
ρ{1 + s}

)
− Pr exp

(
−U0

2
ρ{1 + s}

)}]
− G

U0

Pr

Pr − 1

[
E1

(
U0

2
ρ {1 + s}

)
− E1

(
PrU0

2
ρ {1 + s}

)]
. (53)

The important aspect of this solution is that T0 behaves properly as ρ → ∞.
From these solutions, one can proceed to obtain the constants U0 and U1 in the
asymptotic expansion of the scaled migration velocity, after obtaining the corrections
to the streamfunction fields at O(Re). It can be shown that the expansion for the
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streamfunction fields must proceed as ψ̂ = ψ̂0 + Reψ̂1 + o(Re) and ψ = ψ0 + Reψ1 +
o(Re). The governing equations for ψ̂1 and ψ1 are

E4
r ψ̂1 = 0, (54)

E4
rψ1 = 6G

[
U0

r2
− G

r3
+
B

r5

]
C3(s). (55)

The boundary conditions on ψ̂1 and ψ1 can be inferred from (8) to (10). The expansion
for the temperature fields must proceed as t̂ = t̂0+Ret̂1+o(Re) and t = t0+Ret1+o(Re).
The governing equations for t̂1 and t1 are

λ∇2t̂1 = Pr[U0 + v̂0 · ∇t̂0], (56)

∇2t1 = Pr[U0 + v0 · ∇t0]. (57)

The boundary conditions on these fields can be obtained from (12) and (13). The
solutions for ψ̂1, ψ1, t̂1, and t1 are given in the Appendix. The result for U0 remains
unaltered from that given in (41). The result for the correction U1 at O(Re) in the
case when U0 > 0, that is, when the drop moves upward, is

U1 =
Pr − 1− G(1 + α)(2 + β)

2(2 + 3α)(2 + β)
G. (58)

In the opposite situation when the drop moves downward, U0 < 0, the sign of U1 in
(58) must be reversed.

The next correction to the migration velocity appears at O(Re2 logRe) for reasons
that were clearly established by Proudman & Pearson (1957). The interested reader
will find the logic outlined in Zhang (2000). In the Appendix, we give the results for
the corresponding temperature and streamfunction correction fields at O(Re2 logRe).
Zhang (2000) provides the details of the lengthy solution for the inner temperature
field at O(Re2), obtained using the computer software Maple. Unfortunately, the
labour involved in obtaining the outer streamfunction correction at O(Re2), following
the procedure outlined by Chester & Breach (1969), proved to be too formidable.
This is needed to calculate the correction to the scaled migration velocity at O(Re2).
Even though we provide the following correction U2L at O(Re2 logRe) in the scaled
migration velocity because it is available, we add the note of caution that the result
is incomplete without having the correction U2 at O(Re2) in hand:

U2L =
5Pr2 + 3Pr − 6

30(2 + 3α)(2 + β)
G2 − 1 + α

5(2 + 3α)
G3. (59)

This correction remains the same regardless of the sign of U0.

3. Concluding remarks
The principal results of this analysis can be found in (40), (53), (58) and (59).

Equation (40), obtained by ignoring inertia, shows that the correction to the undis-
turbed linear temperature field far from the drop grows in magnitude logarithmically
with distance from the drop, and therefore is ill-behaved. We trace this behaviour
to the interaction of the 1/r decay of the Stokeslet velocity field with the uniform
temperature gradient field far from the drop. Inclusion of a slight amount of inertia
has a critical influence on the outer temperature field, as can be observed from (53).
This temperature field is well-behaved, and the correction to the undisturbed linear
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temperature field far from the drop decays inversely with distance from the drop. This
is a consequence of the more rapid spatial rate of decay of the Oseen velocity field
that is brought about by the inclusion of inertia. Equations (58) and (59) provide the
results for the migration velocity at higher orders that result from the present analysis.

We note that the solutions for the fields and the migration velocity behave properly
when one takes the limit Pr → 1. Also, it is worthy of mention that the analysis
becomes significantly more complex when the Prandtl number is no longer of O(1). In
the present analysis, in a natural manner, the velocity field that appears in the inner
energy equations is the inner velocity field, and that in the outer energy equations is
the outer velocity field. This happens because we assume Pr ∼ O(1). This is not a
physically correct approach when the Prandtl number is very small or very large. For
example, consider the case when the Prandtl number is very small, implying Re�Ma.
In this case, the inertia terms in the Navier–Stokes equation become comparable to
the viscous terms at r ∼ O(1/Re), but conduction continues to be the dominant
mechanism for heat transport until one reaches r ∼ O(1/Ma). Therefore, the Oseen
velocity field must be used in the inner temperature field equations in the region
(1/Re) < r < (1/Ma), instead of the Stokes solution and inner corrections to it that
appear naturally in these equations. In the opposite case when the Prandtl number is
very large, Re�Ma. Here, even though the inertial correction to Stokes flow needs
to be accommodated only at r ∼ O(1/Re), in the energy transport problem, the Oseen
solution is used beginning at r ∼ O(1/Ma). This is perhaps more tolerable, because
the Oseen solution provides a uniform representation of the velocity field at leading
order. In any case, the situation involving very large or very small Prandtl numbers
involves an additional length scale, and requires more detailed analysis, which we
do not undertake in this work. Finally, it is noteworthy that the leading-order inner
temperature fields are different from the solution of Young et al. (1959) by an additive
constant that is of O(1), a result that has no effect on the migration velocity which
only depends on the temperature gradient at the surface of the drop.

Appendix
The solutions for the first corrections to the streamfunction fields at O(Re), ψ̂1 and

ψ1, can be written as

ψ̂1 = F̂1(r
4 − r2)C2(s) + F̂2(r

5 − r3)C3(s), (A 1)

ψ1 =

[
F1r

2 +
F2

r

]
C2(s) +

[
F3

r3
+ F4

]
C3(s) + 6G

[
U0

24
r2 − F5

24r
− G

24
r

]
C3(s), (A 2)

where Cn(s) is the Gegenbauer polynomial of order n and degree − 1
2
, and

F̂1 = 3
4
H1PrG, (A 3)

F̂2 = H2H3H4Pr +

[
7

20(2 + β)
H2 −H2H3H6Pr

]
G+

α(5 + 4α)

20
H2G

2, (A 4)

F1 = 1
2
H1PrG, F2 = − 1

2
H1PrG, (A 5), (A 6)

F3 = −H2H3H4Pr +

[
5α− 2

20(2 + β)
H2 +H2H3H6Pr

]
G+

α(5α+ 6)

20
H2G

2, (A 7)
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F4 = −H2H3H4Pr −
[

25α+ 18

20(2 + β)
H2 +H2H3H6Pr

]
G+

α(5α+ 4)

20
H2G

2, (A 8)

F5 = [Gα(2 + β)− 2]H1. (A 9)

The solutions for the first corrections to the temperature fields at O(Re), t̂1 and t1,
can be written as

t̂1 = K̂1 + K̂2rP1(s) + K̂3r
2P2(s) +

Pr

λ

(
K̂4

6
r2 +

K̂5

20
r4 +

K̂6

14
r4P2(s)

)
, (A 10)

t1 = K1 +
K2

r
+

(
K3r +

K4

r2

)
P1(s) +

K5

r3
P2(s) +

K6

12r4
+
K7

2r2
+
K8

2
r

+

(
K9

6r4
− K10

4r2
− K11

6r
− K12

4
r

)
P2(s). (A 11)

The constant K1 cannot be determined at this level. The remaining constants are

K̂1 = K1 −H1Pr(H8 +H9G), (A 12)

K̂2 =
3

4(2 + β)
PrG, (A 13)

K̂3 = − H1

21λ
Pr

(
H3 [9(3 + 4β) + 7λ(7− β)] +

35λH6 + 9 + 6β

3 + 2β
G

)
, (A 14)

K̂4 = H7[13 + 2β + (2 + β){2α(2 + β) + 2β + 7}G], (A 15)

K̂5 = −5H7[3 + (2 + β)G], K̂6 = 2H7[3 + (2 + β)G], (A 16), (A 17)

K2 = −Pr[H7H10 +H1H11G], K3 = 1
4
PrG, K4 = −3H12PrG,

(A 18), (A 19), (A 20)

K5 = Pr(H13 +H14G), (A 21)

K6 = −H7Pr
[
2(1− β)− α(2− β − β2)G

]
, (A 22)

K7 = 4H12PrG, K8 = 2
3
PrG, K9 = K6, (A 23), (A 24), (A 25)

K10 = 20H12PrG, (A 26)

K11 = H7Pr(8− 2β +H15G), (A 27)

K12 = 1
3
PrG. (A 28)

The solutions for the corrections to the streamfunction fields at O(Re2 logRe), ψ̂2L

and ψ2L, can be written as

ψ̂2L = L̂1(r
2 − r4)C2(s), ψ2L = (L1r

2 + L2/r)C2(s), (A 29), (A 30)

where

L̂1 = −H1

20
Pr(3 + 5Pr)G2, (A 31)

L1 = − 2
3
L̂1, L2 = −L1. (A 32), (A 33)
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The solutions for the first corrections to the temperature fields at O(Re2 logRe), t̂2L
and t2L, can be written as

t̂2L = W1 +
W2

2 + β
rP1(s), (A 34)

t2L = W1 +
W2

3

(
r +

1− β
2 + β

1

r2

)
P1(s). (A 35)

The constant W1 cannot be determined at this level. The other constant is

W2 = 1
20
Pr(3 + 5Pr)G2. (A 36)

In the above results

H1 =
1

(2 + 3α)(2 + β)
, H2 =

1

(1 + α)(2 + 3α)
, (A 37), (A 38)

H3 =
1

(2 + β)(3 + 2β)
, H4 =

7λβ − 49λ− 18β

35λ(2 + β)
, (A 39), (A 40)

H5 = 7
20

(3 + 2β), (A 41)

H6 =
35λαβ + 133λα+ 154λ+ 24β + 14λβ

140λ
, (A 42)

H7 =
1

(2 + 3α)(2 + β)2
, H8 =

17 + 20β + 8β2 + 6βλ− 6λ

12λ(2 + β)
, (A 43), (A 44)

H9 =
3− 3λ(12 + 17α+ 4β + 7αβ) + 4(1 + α)(2 + 5β + 2β2)

12λ
, (A 45)

H10 =
2(2β + β2 + λβ − λ)

3λ
, (A 46)

H11 =
4αβ + 2αβ2 − 8αλ− αβλ+ 4β + 2β2 − 6λ

3λ
, (A 47)

H12 =
β − 1

12(2 + β)
, (A 48)

H13 =
56λ+ 35λβ − 18β − 28λβ2

21λ (2 + 3α)
(
12 + 20β + 11β2 + 2β3

) , (A 49)

H14 = −24β + 112λ+ 280αλ− 98βλ− 77αβλ− 56β2λ− 140αβ2λ

84λ (2 + 3α) (2 + β)(3 + 2β)
, (A 50)

H15 = 8 + 4α− 4β − 4β2 − 8αβ − 5αβ2. (A 51)
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